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INL has been designated as the lead laboratory for High-
Temperature Electrolysis (HTE) Research and Development 
under the DOE Nuclear Hydrogen Initiative

HTE enables efficient large-scale production of hydrogen without 
consuming fossil fuels and without any emission of greenhouse gases  
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Related Project: Coelectrolysis of Steam and Carbon 
Dioxide for direct Production of Syngas

• The solid oxide electrolytes used for HTE conduct oxygen ions.  
Therefore CO2 can be electrolyzed to CO as well as H2O to H2

• Coelectrolysis refers to simultaneous electrolysis of H2O and 
CO2 to form H2 and CO (syngas)

• Depending on the source of the CO2 (e.g., biomass), and the 
electrical power (e.g., nuclear) this process has the potential to 
enable a carbon-neutral synthetic fuel cycle
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High-Temperature Co-Electrolysis Concept for Syngas Production
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Coelectrolysis of Steam and Carbon Dioxide for Direct 
Production of Syngas

H2O + CO2 → H2 + CO + O2

electrical power + heat

cathode side anode side

Coelectrolysis chemistry is complicated by the Reverse Shift Reaction (RSR)
CO2 + H2 ↔ CO + H2O
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Chemical Equilibrium Coelectrolysis (CEC) Model Schematic
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Overall shift reaction without electrolysis:

y0,CO CO + y0,CO2 CO2 + y0,H2 H2 + y0,H2O H2O  
y1,CO CO + y1,CO2 CO2 + y1,H2 H2 + y1,H2O H2O 

Chemical Balance Equations (without electrolysis):

y0,CO + y0,CO2 = y1,CO +y1,CO2 (carbon)
2y0,H2 +2y0,H2O = 2y1,H2 + 2y1,H2O (hydrogen)
y0,CO + 2y0,CO2 +y0,H2O = y1,CO + 2y1,CO2 + y1,H2O (oxygen)

OHCO

HCO
eq yy

yy
TK

2,1,1

2,12,1)( =Equilibrium Constant Equation:

4 Equations, 4 unknowns – solve for hot electrolyzer inlet composition, state 1

Chemical Equilibrium Coelectrolysis Model (cont)

heat
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Across the electrolyzer, the Chemical Balance Equation for oxygen must 
be modified to account for electrolytic reduction of the process gas:

y1,CO + 2y1,CO2 +y1,H2O =  y2,CO + 2y2,CO2 + y2,H2O + ∆nO

Again,
4 Equations, 4 unknowns – can solve for hot electrolyzer outlet 
composition as a function of temperature

Chemical Equilibrium Coelectrolysis Model (cont)

Tot

e
O NF

In
&2

=∆ (Relative molar rate of monatomic oxygen 
removal from the steam/CO2 mixture)

where
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Co-electrolysis Model, Energy Equation
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Energy Equation

Q& is specified (e.g., adiabatic) or isothermal operation can 
be assumed and      can be determinedQ&

In general, TP is unknown and must be determined iteratively
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The coelectrolysis equilibrium model was implemented analytically in MathCad and 
also incorporated into UniSim system analysis software for large-scale plant analysis; 
comparisons to 3-D CFD simulations using FLUENT were also performed 
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Representative Results – 1-D Coelectrolysis Model
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The CEC model was developed for comparison to experimental results 
and for incorporation into UniSim system simulation analyses:

Process flow diagram for coelectrolysis plant
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Constraints for Simulations

• Inlet composition: 10% H2/CO, 90%  H2O/CO2, set by adjusting the fraction of 
syngas product recycled back to the electrolysis process.

• Outlet composition for fixed oxygen utilization cases : 90% H2/CO, 10%  
H2O/CO2 set by adjusting the total mass flow rate of the process gas into the 
electrolysis process as the current density was varied.  

• yH2/yCO in the product stream was fixed at 2.12 by adjusting the carbon dioxide 
inlet flow rate.  This ratio is optimal for the production of synthetic fuel using a 
Fischer Tropsch process with a cobalt catalyst.

• For the air-sweep cases, the oxygen mole fraction exiting the electrolysis process 
on the air side was fixed at 0.5 by adjusting the inlet air flow rate as the current 
density was varied.  

• For the no-sweep cases, the air flow rate is zero and the outlet oxygen mole 
fraction is 1.0.

• The minimum approach temperature of the Electrolysis Heat Recuperator was set 
at 50°C by adjusting the flow split between the power cycle and the intermediate 
heat exchanger.

• The temperatures of the helium entering and exiting the reactor were fixed at 
490°C and 900°C respectively. 
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Overall Thermal-to-Syngas Production Efficiency:
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Results of Commercial-Scale Analyses
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Overall syngas production efficiencies for the air-sweep cases
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Note: 10 kg/s of syngas
production is enough to 
generate ~ 4,900 gal/hr 
(118,000 gal/day) of diesel 
fuel.
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Low utilization is inefficient 
due to processing of excess 
flows, incomplete heat 
recuperation, etc.
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Effect of reactor outlet temperature on power cycle and overall 
syngas production efficiencies at thermal-neutral voltage 
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Summary and Conclusions

• An engineering process model has been developed for performance 
evaluation of large-scale syngas production plants based on high-
temperature co-electrolysis of carbon dioxide and steam 

• The process model includes a validated chemical equilibrium 
coelectrolysis (CEC) model to predict electrolyzer outlet 
compositions and temperatures

• Overall thermal-to-syngas process efficiencies of 43 – 48 % were 
predicted with realistic modeling assumptions, including realistic 
treatment of heat exchanger performance

• Higher process efficiencies result at higher reactor outlet 
temperatures due to increased power cycle and electrolyzer
efficiencies.
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Future Work

Integrate flowsheet analysis with economic analysis to 
assess the economic feasibility of synthetic fuels 
production via coelectrolysis/FT over a range of 
scenarios


