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INL has been designated as the lead laboratory for High-
Temperature Electrolysis (HTE) Research and Development
under the DOE Nuclear Hydrogen Initiative
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HTE enables efficient large-scale production of hydrogen without
consuming fossil fuels and without any emission of greenhouse gases

ldaho National Laborator



Related Project: Coelectrolysis of Steam and Carbon
Dioxide for direct Production of Syngas

* The solid oxide electrolytes used for HTE conduct oxygen 1ons.
Therefore CO, can be electrolyzed to CO as well as H,O to H,

* Coelectrolysis refers to simultaneous electrolysis of H,O and
CO, to form H, and CO (syngas)

* Depending on the source of the CO, (e.g., biomass), and the
electrical power (e.g., nuclear) this process has the potential to
enable a carbon-neutral synthetic fuel cycle
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High-Temperature Co-Electrolysis Concept for Syngas Production
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Separator

In a high temperature co-electrolysis system
using nuclear energy, a nuclear reactor Steam/Hydrogen
supplies thermal energy that both generates Mixture
the electricity and heats the steam/Co,
needed for the co-electrolysis process.

[ > Syngas (Co + Hj)

Membrane

Co,/H;0

Steam/Syngas

Helium r
Mixture

Helium —

s

c U3

Gas Turbine

[ > Oxygen

Compressor

High-
Temperature
Steam
Electrolysis
Unit

Heat Exchanger

Very High Recuperator
Temperature l I

Reactor
Heat Sink

Heat Sink
Electrolyte
Electrodes
Compressor

— ——
Co, + Steam

Generator

Power for Electrolysis —=

£)

==> Hectricity

07-GASD050

Power to Grid —=




Coelectrolysis of Steam and Carbon Dioxide for Direct
Production of Syngas

electrical power + heat

H,0 + CO, - H, + CO + O,
~— ~ -
cathode side anode side

Coelectrolysis chemistry is complicated by the Reverse Shift Reaction (RSR)
CO,+H, < CO+H,0
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Chemical Equilibrium Coelectrolysis (CEC) Model Schematic
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Chemical Equilibrium Coelectrolysis Model (cont)

Overall shift reaction without electrolysis: hTat

Yoco €O+ Ypc0: CO2 + Yy H2 + g 1150 H20 >
Y100 CO* Y100, CO2+ Y,y H2 4 Y 1150 H20

Chemical Balance Equations (without electrolysis):

Yo.co TYoco2 = Yico TVicoz (carbon)
2y0,H2 +ZY(),H20 - 2y1,H2 T 23/1,}120 (hydrogen)
Yoco ™ ZyO,COZ Voo ~Vico ™ Zyl,COZ T Y1 H20 (oxygen)

Equilibrium Constant Equation: Keq (T) = 1,CO2.1,H2
Yi.coVi.m20

4 Equations, 4 unknowns — solve for hot electrolyzer inlet composition, state 1
9
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Chemical Equilibrium Coelectrolysis Model (cont)

Across the electrolyzer, the Chemical Balance Equation for oxygen must
be modified to account for electrolytic reduction of the process gas:

Yico™ 23/1,002 TVimo ™ YVoco ™ 2J’2,coz T Vom0 T An,

/

where An, = ¢ (Relative molar rate of monatomic oxygen
2FNy,,  removal from the steam/CO, mixture)

Again,
4 Equations, 4 unknowns — can solve for hot electrolyzer outlet
composition as a function of temperature
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Co-electrolysis Model, Energy Equation

heatup of process stream from

T >
regeneration and direct heating P
specified cold inlet flow rates: | e el Z
NH2O’NCO2’NH2’NN2 TR

cold inlet, state 0 EEEEEEENESEE. 10t electrolyzer inlet,
state 1

hot electrolyzer outlet,
state 2

heatup of sweep-gas stream from
o

regeneration and direct heatin
NAiI’ ¢ s T R
\
Energy Equatlon Control Volume

Q_W:ZNZ[AH; +H,(T,)-H]- ZNZ[AH; +H,(T;)—H/]

O is specified (e.g., adiabatic) or isothermal operation can
be assumed and O can be determined

In general, T;, 1s unknown and must be determined iteratively
~~®
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Representative Results — 1-D Coelectrolysis Model

The coelectrolysis equilibrium model was implemented analytically in MathCad and
also incorporated into UniSim system analysis software for large-scale plant analysis;
comparisons to 3-D CFD simulations using FLUENT were also performed
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The CEC model was developed for comparison to experimental results
and for incorporation into UniSim system simulation analyses:
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Constraints for Simulations

 Inlet composition: 10% H,/CO, 90% H,O/CO,, set by adjusting the fraction of
syngas product recycled back to the electrolysis process.

* Outlet composition for fixed oxygen utilization cases : 90% H,/CO, 10%
H,0/CO, set by adjusting the total mass flow rate of the process gas into the
electrolysis process as the current density was varied.

*  Yuo!/Yeo In the product stream was fixed at 2.12 by adjusting the carbon dioxide
inlet flow rate. This ratio is optimal for the production of synthetic fuel using a
Fischer Tropsch process with a cobalt catalyst.

» For the air-sweep cases, the oxygen mole fraction exiting the electrolysis process
on the air side was fixed at 0.5 by adjusting the inlet air flow rate as the current
density was varied.

» For the no-sweep cases, the air flow rate is zero and the outlet oxygen mole
fraction is 1.0.

« The minimum approach temperature of the Electrolysis Heat Recuperator was set
at 50°C by adjusting the flow split between the power cycle and the intermediate
heat exchanger.

* The temperatures of the helium entering and exiting the reactor were fixed at
490°C and 900°C respectively.
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Overall Thermal-to-Syngas Production Efficiency:

NH2 LHV, + N.,LHV,,
77 Syn = Z Q




Results of Commercial-Scale Analyses




Overall syngas production efficiencies for the air-sweep cases
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Overall syngas production efficiencies for the no-sweep cases
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Overall syngas production efficiency for a fixed electrolyzer
inlet flow rate (variable utilization) with air sweep
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Effect of reactor outlet temperature on power cycle and overall
syngas production efficiencies at thermal-neutral voltage
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Summary and Conclusions

« An engineering process model has been developed for performance
evaluation of large-scale syngas production plants based on high-
temperature co-electrolysis of carbon dioxide and steam

* The process model includes a validated chemical equilibrium
coelectrolysis (CEC) model to predict electrolyzer outlet
compositions and temperatures

* Overall thermal-to-syngas process efficiencies of 43 — 48 % were
predicted with realistic modeling assumptions, including realistic
treatment of heat exchanger performance

« Higher process efficiencies result at higher reactor outlet
temperatures due to increased power cycle and electrolyzer
efficiencies.
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Future Work

Integrate flowsheet analysis with economic analysis to
assess the economic feasibility of synthetic fuels
production via coelectrolysis/FT over a range of
scenarios



