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Introduction
• Kinetics Upgrades in RELAP5-3D:

– Installed Krylov solver for SS
– Extended Krylov solver to 4 energy groups
– Installed TPEN nodal solver for Hex
– Installed GMRES option for Krylov solver
– Implement rod cusping correction (for TPEN only)
– Implemented reactivity feedback calculation
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Krylov SS Solver
• BiCGSTAB implemented for transients (1996)

– Used LSOR SS solution for initial condition
– Caused complications in data mapping between two 

solvers
• BiCGSTAB solver now extended to steady-state

– Simplifies database.
– Provides better consistency between steady-state and 

transient solution
• Weilandt Shift is used to accelerate eigenvalue 

calculation (replaces Chebyshev)
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4 Energy Groups
• LSOR solver handles up to 4 energy groups
• Krylov solver only handled up to 2 energy groups
• All Krylov solver logic has now been extended

– Coarse mesh problem
– Nodal solution (NEM, TPEN)
– Cross section evaluation

• Up- and Down- scatter both treated

– Ancillary routines
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TPEN Nodal Solver
• Tri-angular Polynomial Expansion Nodal (TPEN)

– For Hexagonal geometries
– Replaces Nodal Expansion Method (NEM) in the radial direction
– NEM still used in the axial direction

• Purpose:
– Obtain higher-order intra-nodal flux distribution
– Provide more accurate current at the boundaries

• Design
– Divide hexagon node into 6 triangles
– Solve for surface and corner fluxes
– Update Coarse-mesh solution with refined current across hex 

boundaries
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TPEN Nodal Solver
• Unknowns Selected for a Triangle (9 in total per Group)

333222
0),( pcucxcpbubxbyaxacyx puxpuxyx ++++++++=φ

φ
xφ

~
yφ

~
xφ

xφ

pφ

uφ

uφ

pφ

x

p

u

− Nodal Volume Average Flux, dydxyx
V

 ),(1
∫∫= φφ

dydxyxx
Vhx  ),(1

3
32~

∫∫= φφ dydxyxy
Vhy  ),(12~
∫∫= φφ

− Moments

)( dd rφφ =− Fluxes at three Corners,

dyyx
hx  ),(1
∫= φφ

− Surface average fluxes at three surfaces

• Flux Expansion for a Triangle
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GMRES Solver
• GMRES is the most reliable Krylov subspace method for 

solving asymmetric linear system Ax=b.
• At each step of the iteration m, GMRES finds the solution 

in Krylov subspace  Km =span{r0,Ar0, A2r0,…Am-1r0}, which 
minimizes the L2-norm of the residual. Where r0=b-Ax0 . 

• If Vm is the orthonormal base of Km , then the mth step 
GMRES solution is  xm=x0 +Vmym ,            where  ym =argminy || 
b- A(x0+vmy)||2

• The L2-norm of residual is guaranteed to decrease 
monotonically during the GMRES iteration (unlike other 
Krylov methods).

• The exact solution can be obtained with no more than n
iterations, where n is the dimension of linear system.
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Preconditioned GMRES
• The convergence rate of GMRES  relies on the condition 

number of matrix A. If the condition number of A is too 
large, then large a number of GMRES iterations will be 
needed to achieve acceptable convergence. 

• If a matrix M which is similar to matrix A and is easier to be 
inverted, then M can be used as preconditioner. A solution 
z can be obtained from linear system:  (AM-1) z=b, the final 
solution is then obtained as x=M-1 z.

• As M is similar to A, the condition number of (AM-1) is 
normally much smaller than condition number of A, z can 
be obtained with many fewer iterations of GMRES than 
would be required to solve x directly with the 
unconditioned GMRES method.
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Restarted GMRES
• In GMRES, the vectors in Vm, the orthonormal basis of Km

should be stored. The number of vectors, m, is the same 
as the number of iterations. The GMRES algorithm can 
become computationally impractical when m is large 
because of the growth of memory and computational 
requirements as m increases.

• One way to reduce the memory requirement is Restarted 
GMRES in which only a fixed number of vectors are 
stored. When the number of iteration reaches the specified 
number of vectors, the GMRES solution at this step will be 
used as initial solution guess for a new restarted GMRES 
iteration. This method is implemented in RELAP3D.
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GMRES Implementation
• As the Matrix-vector production (Axb) and the 

preconditioning (minv) of the Block Incomplete LU 
factorization (BILU) have already been developed for 
previous Krylov solver BiCGstab, the major task of 
implementing GMRES was coding the GMRES algorithm.

• This consisted of two major parts:
– Orthogonalization with Modified Gram-Schmidt method
– Solving the linear system with Hessenberg  matrix  by 

QR factrization with Givens rotation
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GMRES Solver
• The convergence rates of both GMRES and BiCGstab rely on the 

condition number of matrix. 

• If the condition number of the matrix is small, the performances of 
GMRES and BiCGstab are comparable. 

• If the condition number of matrix is very large, GMRES is more reliable 
than BiCGstab. BiCGstab may not converge for some matrices, but in 
these cases GMRES will converge. 

• The  condition numbers of matrices at steady state and transient can 
be effected by user input. 

– For transients, the condition number reduces when time step size decreases. 
– For steady state,  Wielandt shift is often used to accelerate eigenvalue, but at the 

same time, it also makes the linear system ill-conditioned. So, when the linear 
system is ill-conditioned, Wielandt shift should be turned off. GMRES  instead of 
BiCGstab  should be used to solve the linear sytem.
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Rod Cusping Effect
• When the control rod is partially inserted into a node, the intranodal 

flux distribution is distorted due to the presence of the strong thermal 
absorber. In such cases, the volume weighting scheme to obtain the 
homogenized nodal cross section can introduce significant errors in 
the core calculation. 

• The detailed intranodal flux variation is required to flux/volume 
weight the cross sections and to preserve the reaction rate when 
computing the homogenized cross section.  The intranodal flux 
shape is not known “a priori” and the volume weighting introduces 
the so-called "rod cusping" effect for partially inserted control rods. 

• The typical rod cusping effect occurs in eigenvalue calculations in 
such a way that the core keff varies in a cusp (or wavy) shape as the 
control rod insertion depth changes. The rod cusping effect is also 
observed in core power variation during a transient that involves 
slow control rod motion.
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Rod Cusping Effect
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Rod Cusping Correction Method

• To correct for the rod cusping effect, the detailed 
axial flux distribution needs to be calculated prior

• The intranodal flux distribution in a partially rodded 
node is obtained by solving a three node  problem 
by the fine mesh finite difference scheme. The flux 
weighting factor can be readily obtained from the 
intranodal flux solution.

• To insure the consistency of the nodal solution with 
the homogenized nodal cross sections and the fine 
mesh solution, discontinuity factors are defined at 
both surfaces of partially rodded node.
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“Three Node” Problem

• The middle node is partially rodded and it is adjacent 
to a fully rodded and an unrodded node. For the three-
node problem, a transverse-integrated neutron 
balance equation can be obtained in the same way as 
the two-node nodal problem. 

• There are 30 fine mesh in the three node problem with 
10 mesh in each node. The mesh are uniform within  
each of  the 4 regions and the rod tip is set at interface 
of the mesh.

• The three node problem is solved using the finite 
difference method.



16

Matrix Structure of Three Node Problem
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• The average fluxes of the rodded and 
unrodded nodes are used as constraints 
in the solution and the incoming 
currents at both ends of three nodes 
model are used as boundary 
conditions. 

• This results in a sparse matrix with a 
bandwidth equal to the number  of 
neutron groups.

• This problem is solved by Gauss 
Elimination (or LU factorization).
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Rod Cusping Effect



18

Rod Cusping Implementation
• Currently only used with TPEN

– Complications in implementing for 4-groups
– Two options available

• Homogenous cross sections with intra-nodal flux weight
• Use axial discontinuity factors for correction

• Future work:
– Expand for use with NEM (hexagonal and cartesian)
– Expand for use with CMFD-only
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Reactivity Feedback Edits
• Partial reactivity due to feedback mechanisms

– Control rods
– Doppler temperature
– Moderator temperature
– Moderator density
– Boron concentration
– Xe/Sm concentration

• Calculated based on initial adjoint solution
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Reactivity Feedback Edits

• Dynamic reactivity
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Reactivity Feedback Edits

• Total Reactivity
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• Caveats
– Null reactivity should be zero (by definition)
– It is nonzero in most cases due to numerics (negligible)
– Nodal Leakage component is an abstract term

• Should be lumped with the parameter causing the biggest change
• Usually this is control rods
• Left to user to decide how to treat this term
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Summary
• Krylov solver is recommended over LSOR

– Card 30000003, Word 17 (set to 1)

• New features include
– Full steady-state & transient solution (with restart)
– 4 Energy group representation (up- and down-scatter)
– TPEN nodal solution

• Slower, but higher accuracy over NEM
• Useful for problems with steep flux gradients

– GMRES solver added as compliment to BiCGSTAB
• Better performance for poorly-conditioned linear systems

– Rod Decusping Logic (TPEN only)
– Reactivity feedback edits



23

Summary
• Future work

– Extend rod decusping logic
• CMFD-only 
• NEM (hexagonal and cartesian)

– Improve CPU performance
• Real-time computing
• Clean up existing parallel logic in source code
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