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%\EEW Introduction

a Conventionally, the limiting break for
BWR containment design is the
recirculation line break.

a In the ABWR design, the jet pumps
driven by the recirculation loops are
replaced by the reactor internal pumps
(RIPs).

a As a result, the limiting break for ABWR
containment design shifts to the
Feedwater Line Break (FWLB).
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Introduction

Essential Processes to be calculated

(1) Critical flow at the break ends or the internals,
such as FW sparger and venturti,
(2) Flashing of RPV inventory and FW near the break;
(3) Run out and coast down of the FW pumps;
(4) Steam extractions to FW heaters and FWP turbines;
(5) Flashing of saturated water initially stored inside
the FW heater shell sides and MSR drain tanks;
(6) Energy release from saturated water and system metal,
(7) Cold water transportation from the main condenser to
the break; and

(8) ECC injections and associated level variations.
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System Modeling with RELAP5-3D
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System Modeling with RELAP5-3D

Modeling of RPV and Steam L.ines
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System Modeling with RELAP5-3D
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System Modeling with RELAP5-3D

Modeling of Condensate & Feedwater

Systems
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%ﬂ System Modeling with RELAP5-3D

Modeling of FW pump-shaft-turbine module
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%ﬂ System Modeling with RELAP5-3D

Modeling of Inboard & Outboard Breaks
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Assumptions

Initial Conditions

Parameter Initial Value Initial Value
(INER) (GE)
Reactor Thermal 4005.0 4005.0
Power [MWH1] (102 %) (102%)
RPV Dome 7.31 7.31
Pressure [MPa] (102 %) (102%)
RPV Core Flow 16,107 16,110
[kg/s] (111.1 %) (111.1%)
RPV Narrow 426.0 427.0
Range Water
Steant an 2177.8 2174.0
Feedwater Flow (102 %) (102%)
[ka/s]
Feedwater 216.9 216.9
Temperature [°C] | (102 %) (102%)

Engineering Simulator
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N Sensitivity Studies
JRPV modeling: (1) initial core flow
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Assumptions

Q®Plant Operations

» Extraction steam continues to enter the feedwater heater and the feedwater
pump turbines until steam inventory is depleted or blocked by the non-return
valves designed to protect main turbines;

»Non-safety systems and components are assumed to fail in ways that
maximum the amount of water mass and energy blowdown;

» Feedwater flow to the vessel through the unbroken line continues

intermittently through the event, depending on the feedwater line and RPV
pressures.

»MSIVs will be fully closed within 3.0-4.5 seconds[3-4], and 3.0 seconds is
conservatively assumed for inboard break (RPV and BOP blowdown);

» After 30 minutes after break for long term blowdown calculation, HPCF
and RCIC injections will be terminated and LPFL injection will be regulated
to maintain water level between L-2 and L-8.

B FITEH
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QModeling Assumptions

»Homogeneous Moody model is applied to calculate blowdown
flow rate;

» The effects of internal choking at Venturi of FW system and
Spargers inside RPV are considered,;

» The pump curves of flow run out are used to model the FWPs;

» Flashing of water depressurized below its saturation point and
the associated effect of flashing on steam supply are considered,;

» The effect of stored heat from metal and saturated water
stored In feedwater heater shell sides on the feedwater heating
are considered:;

T
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Results

QARPV Short-Term Inboard Break,
Sequence of Events of FWLB Inboard Break

Time [s] Events

0.000 |Feedwater line break.

0.310 |L-4 and 10 RIPs Runback (L-4 + 0.0s, not apply).

5.000 |Reactor scram by drywell high pressure (Assumption).

5.393 |L-3, Trip of 4 RIPs without MG set (L-3 + 0.0s).

12.629 |L-8, Turbine trip (L-8 + 0.0s, not apply), and Feedwater pump turbine trip (L-8 + 0.0s, not apply).

19.268 [MSIVs closure by main steam line low pressure.

26.742 |L-2, Trip of 3 RIPs with MG set (L-2 + 0.0s).

31.000 |HPCF startup complete (Drywell high pressure + 26.0s).

32.742 | Trip of other RIPs with MG set (L-2 + 6.0s).

34.000 |RCIC startup complete (Drywell high pressure + 29.0s).

41.000 |LPFL startup complete (Drywell high pressure + 36.05s).

Engineering Simulator
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Results

Break Flow - RPV Side [kg/sec]

QARPV Short-Term Inboard Break,
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Results
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Pump Velocity (rpm)
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N Results

LP Turbine Extraction Flow (lbm/s)

QBOP Short-Term Inboard Break.
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N Results

QBOP Short-Term Inboard Break
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-i%% Conclusions
D&

aQ The blowdown licensing analysis of FWLB have been
successfully analyzed by the advanced RELAP5-3D/K,
which include

> Inboard & Outboard break
> RPV & BOP blodwodn
»  Short term & long term

O All essential processes involved can be adequately
simulated by RELAP5-3D/K:

(1) critical flow at the break ends or the internals,

(2) flashing of RPV inventory and FW near the break,

(3) run out and coast down of the FW pumps;

(4) steam extractions to FW heaters and FWP turbines;

(5) flashing of saturated water initially stored inside systems;
(6) energy release from saturated water and system metal,

(7) cold water transportation from condenser to the break; and
(8) ECC injections and associated level variations.

T
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%“ Conclusions

Q Through comparisons against the PSAR
curves for the inboard break, it was observed

that

» The revised accumulated blowdown mass can be
bounded in the first 180 seconds,

» The revised accumulated blowdown energy can
only be bounded in the first 120 seconds.

T
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%\EEW Special Issue of LPFL Injection Bypass

0 What is the LPFL Injection Bypass? DCM

» A two-phase mixture water column with
cold ECC water above might exist in the
DCM during a FWLB event.

» The effective hydraulic head of this
mixture water Is not enough to bring the
DCM water into the core core.

» Once DCM water level ascends to the
FW rings, all the LPFL injection water
will be directly driven to the break
without entering the core shroud.

& FIEH 27
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N Special Issue of LPFL Injection Bypass
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N Special Issue of LPFL Injection Bypass

Reactor Water Level (cm)
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