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Walker diffusion method for calculation of transport properties of finite composite systems
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A heterogeneous medium may be represented by a scalar field of local transport coefféicgentsonduc-
tivity ) or by a “resistor network” derived from that scalar field. In either caseeffective(macroscopitand
local (microscopi¢ transport properties may be calculated by the walker diffusion method. Some sample
calculations for disordered systems are presented to demonstrate the method.
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[. INTRODUCTION culations(Romeu and NoetingdB] analyze various choices

for the internodal transmissivities needed for the conver-
The transport properties of porous and fractured medision).

determine, for example, the rapid migration of chemical con- Van Siclen[4] has recently introduced the walker diffu-

taminants through fractured rock, and the displacement of oision methodWDM) for calculation of the effective transport
in porous rock by injected brine. Such environmental andproperties of scalar fields. In contrast to the FDM, the WDM
industrial applications motivate the many fundamental studworks directly with the scalar field, and does not require
ies of transport in heterogeneous me@diae the comprehen- boundary conditions in order to determine the effective prop-

sive review by Sahimj1]). erties of the medium. The WDM also obtains the transport
The electrical properties are governed by the set of transproperty correlation lengtlg (the length scale above which
port equations, the medium is effectively homogeneous with respect to the
transport property of interest, and below which the medium
VXE(r)=0, V-J(r)=0, J(r)=o(r)E(r), is heterogeneouisand the transport property scaling law
(which is relevant when the system size is less thafb].
E(r)=—-Va(r), (1) This stochastic method has recently been applied to a study

of the electric and hydraulic properties of single fractures,
which relate the electric fiel& and the current density at  \yhere a fracture is represented by a field of local transport
the pointr. The heterogeneity of the medium is expressedcoefficients that are functions of the local aperture vééle
through the local conductivity(r). This same set of equa-  To broaden its utility, the WDM is further developed be-
tions, with appropriate vector and scalar fields, enables calow to treat finite scalar fieldé.e., those having nonperiodic
culation of the thermal, dielectric, and dlﬁ:US|V|ty properties boundary Conditiorbs and finite and infinite resistor net-
as well; again, the local transport coefficients in each cas@orks. Thus the WDM enables studies of the effects of im-
reflect the heterogeneity of the medium. The electrical anaposed boundary conditions on transport properties of hetero-
log is often extended to fluid permeabilityi@cal version of  geneous media, and allows direct comparison of calculated
Darcy’s law for fluid flow is properties for media represented by scalar fields and by regu-

lar resistor networks, respectively.
Q(r)=—[k(r)/u]VP(r), 2

where Q(r) is the volumetric flow rateP(r) is the fluid
pressurek(r) is the permeability of the saturated medium,  The walker diffusion methof#4] exploits the isomorphism
and u is the viscosity of the fluid. The incompressibility of between the transport equations and the diffusion equation
the fluid produces the additional equati®n Q(r)=0. for a collection of noninteracting random walkers in the pres-
Solution of these equations for given boundary conditionsence of a driving force. The phase domains in a composite
is typically accomplished by the finite difference methodmicrostructure correspond to distinct populations of walkers,
(FDM). This approach is equivalent to solving Kirchhoff’s where the equilibrium walker densip®(r) of a population
laws for a resistor network, and indeed porous and fracturegs given by the value of the transport coefficier(tr) of the
media are often explicitly modeled as resistor networks. Fotorresponding phase domain. The principle of detailed bal-
example, Bernab2] assigns hydraulic and electric conduc- ance ensures that the population densities are maintained,
tances to the bonds of a network, where those conductancesd provides the following rule for walker diffusion over a
are derived from specified distributions of pore size andscalar field(or digitized microstructune a walker at sitgor
crack aperture and lateral extension. More generally, a hepixel) i attempts a move to a randomly chosen adjaceni site
erogeneous medium is represented by a scalar f@th-  during the time intervar=(4d) ~!, whered is the Euclidean
prised of theo(r) or k(r), for examplg which is effectively  dimension of the space; this move is successful with prob-
converted to a regular resistor network to permit FDM cal-ability p;;=o;/(o+ o), whereo; ando; are the transport
coefficients for the phases comprising sitesnd |, respec-
tively. The path of a walker thus reflects the phase composi-
*Email address: cvs@inel.gov tion (population density and morphology of the domains

II. WDM FOR SCALAR FIELDS
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that are encountered, and may be described by a diffusion P?pi—qu?pj—»ia (9)
coefficientD,, that is related to the effectivenacroscopit
transport coefficientr by where p;_;=p;;/(2d) is the probability that a selected
walker at sitei will move to the adjacent siteover the next
o=(o(r))Dy, (3 time interval (the denominator @ is specific to orthogonal

. . lattices, e.g., square and cubic latticéBgether these equa-
where{o(r)) is the volume average of the constituent trans-jions produce the relation
port coefficients. The diffusion coefficiem,, is calculated

from the equation pi /P?ZGXF{M /KT]. (10)
D= (R?)/(2dV), (49 Note that Eq(10) is equivalent to the expression
where the se{R} of walker displacements, each occurring w(r)=KTIn[p(r)/p°r)], (11)

over the time intervat, comprises a Gaussian distribution

that must necessarily be centered well beygrithe walker SO that the usual relation between the chemical potential gra-

diffusion is otherwise anomaloys]). In practice it is con- dient and a particle concentration gradient in a homogeneous

venient to eliminate the unsuccessful moves inherent in theystem[p(r) =constant is recovered:

rule stated above by use of the variable residence time algo-

it 4], g ? V u(n)=[KT/p(1)]V p(r). (12
Remarkably, the effective transport coefficient is obtained

without solving the set of transport equatiqi$ or imposing

boundary conditions. The WDM was verified by reproducing

some exact results fro_m percolation the4y. JiiT=piPij— PiPj i (13
The WDM can additionally be used teolve the set of

transport equationél); that is, to calculate the vector fields which, after some algebra, produces

and the potential fieldp(r) for given boundary conditions. o O —1

The concept of walker populatiorisepresenting phase do-  Ji—j=2(1pi +Lpj) ~~(exf u; /KT]—exf u; /kT]).

mains in a composijdogether with the walker diffusion rule (14)

is sufficient toderivethe flux equation

Equation(5) may be obtained from the walker flux equa-

This suggests the particular identificatigi= exf w; /KT], so
I =—a(r)Veé(r), (5) that the potential at siteis

where the¢(r) are found to be simple functions of the bi=pilp)= (4 {t) (Tl o), (15
walker densities.

At equilibrium (i.e., in the absence of a driving foicea
single diffusing walker will “populate,” or occupy, the sites
of a composite in proportion to the corresponding transpor
qoe_fficient&r(r); thu_s, in th_e_limit_of infinite time, thequi- Jiﬁjzz(llp?Jrl/p?)fl( bi— ). (16)
librium walker density at sité is given by

where again the ratig /(t,) is the fraction of time spent by
the walkers at sité. Equation(14) for the walker flux then
Pecomes

0 The form of this last equation indicates that the WDM for
pi = o= (4 [{t)) (o), ) finite scalar fields provides a random walk solution to the set
of FDM algebraic equations.

A practical issue is the implementation of boundary con-
itions. Clearly the potential is zero where the walkers are

where the ratio is the fraction of time spent at sind the
averages implied by the angle brackets are taken over g

sitesk. absorbed sincp; equals zero there. Relative potential differ-

_ The walker densities are altered when a chemical potens o are then established by appropriate placement and
tial gradient is created by injecting walkers into the system atstrength" of walker sources. As an example, consider the

one boundary or point, and removing them at another. Th‘?wo-dimensional, multiphase system shown in Figa)l

steady-statavalker density at sité is then Equipotential surfaces may be established at the left and
ot right edges by viewing the system asR& C grid or matrix.
pi=(t/{t) (), @ Then a columrC+1 is added that is identical to colung)
where again the ratio is the fraction of time spent by thewhen & walker reaches colun@+1 it is immediately re-

walkers at sitd [this is of course different from the ratio in Moved(so that columrC+1 is an equipotential surface with
Eq. (6)]. all ¢;=0). To induce correct walker behavior near tRe

The densitiespio andp; and the chemical potential, are ~ Sources in column 1, a colun_m 0 is added that is identical to
related by the principle of detailed balance coll_er_l 2. If awa_lk(_ar placed in cqu_mn 1 moves to column 0
on itsfirst move, it is removed and its time spent in column
PiPi_j=p;Pj_i exf — (u;— mi)/KT] (8) 1 is disregarded; otherwise all moves from a sitentribute
to the residence timg . If the walker diffuses in column 1
and but eventually makes a move to column O, it is removed at
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a 64X 64 square region, then setting the conductivity of each
site i intersected by the circle to the areal average vatye
=f+0.1(1-f), wheref is the fraction of the site contained
within the circle. The electrical properties of the discrete
system were obtained in the manner described alfegei-
potential surfaces at the left and right edges; periodic bound-
ary conditions at the top and bottom edgasing 13 walk-

ers. Figure (b) shows calculated equipotential surfaces
(lines), the density of lines reflecting the magnitude of the
local potential gradient. The calculated effective conductivity
o=(Ji_j)/A$=0.2186(A¢ is the potential drop across the
system; a somewhat smaller value would result from using
the harmonic average conductivity,=[f+(1—f)/0.1]"1

or the geometric average conductivity= (0.1)*~ for those
sites intersected by the circléAnd of course the calculated

o will approach the exact value in any case as the resolution
of the system is increased from 844, This value foro
should be compared with that calculated for the discrete sys-
tem with periodic boundary conditions @i sides; the latter
value is 0.2196:0.0006 obtained by calculating the diffu-
sion coefficientD,, for a single walker diffusing over the
infinite system(the uncertainty inc may be reduced by in-
creasing the number of walksNote that the equipotential
boundaries of the finite system coincide with the periodic
boundaries of the infinite system. Thus the difference in cal-
culated o values is entirely due to the fact that the scalar
conductivity field shown in Fig. () is converted to a con-
ductor network when nonperiodic boundary conditions are
applied[as evident from Eq(16)].

Similar calculations were made for the two-dimensional,
two-phase random system shown in Figp)2The fraction of
white sites is at the percolation thresh@@l592 73; those
sites have the higher conductivitya= 1.0 while the black
sites have the lower conductivityg=0.01. The effective
conductivity o of an infinite system with these properties is
exactly (cpo)Y?=0.1 [8]. The 128128 system in Fig.
2(a) should have a conductivity very close to this, as the

FIG. 1. (a) Two-dimensional, multiphase composite approximat- ductivi lation | h for this choice of d
ing a continuous system comprised of a circular region of conductonductivity correlation length for this choice of, andog

tivity 1.0 (white) centered in a square of conductivity Qitlack. ~ (6~15, Ref.[5]) is much smaller than the system length
The interfacial phases have intermediate conductivity values as if-128). Indeed, the WDM givesr=0.0977 when the left and

dicated by the shade of grai) Equipotential lines calculated for a fight edges of the finite system are made to be equipotential
potential difference applied across the composite. surfaces by releasing and absorbing B° walkers there.

. ) ~ Figure 2b) shows equipotential surfacéknes) in the inte-
that time. If the walker diffuses beyond column 1, it is im- rior of the random system, their tortuosity reflecting the het-
mediately removed when it enters colu@rt 1 or returns o erogeneity of the scalar field. In the case of fluid flow
column 1(not column Q. A new walker is placed in column  through a permeable medium, the large spatial variation in
1 at the site that currently has tisenallestpotential (i.e.,  the fluid pressure gradient ensures channeling of the flow,

smallestt; /o), thus ensuringin the limit of infinite ime  tortuous streamlines, and a broad distribution of solute transit
that column 1 is an equipotential surface. This procedurgimes.

gives a uniform potential gradient in the case of a two-
dimensional homogeneous system.

The discr_ete system in Fig(d) was designe_d to apprqxi- IIl. WDM EOR RESISTOR NETWORKS
mate a continuous system comprised of a circular region of
radius 2 and conductivity 1.0 centered in a unit square of The isomorphism between Ohm’s law for the electrical
conductivity 0.1. Perrins, McKenzie, and McPhedrigf]  current density and the diffusion equation for a collection of
provide a truncated series expression for the transverse coneninteracting walkers in the presence of a driving force
ductivity of an infinite square array of cylinders that gives —V ¢(r) can again be invoked to develop the walker diffu-
0.214 619 for this continuous, two-dimensional system. Figsion method for resistofor conductoy networks The diffu-
ure 1(a) was obtained by superposing a circle of radius 24 orsion current densitywalker flux is

(b)
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FIG. 2. (8 Two-dimensional, two-phase disordered composite
for which the ratio of the two conductivities is 100:th) Equipo-
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work. In analogy with this local relation, the effectiveac-
roscopig transport coefficientr for the regular network is
given by

o=D,, (19

whereD,, is the macroscopic walker diffusion coefficient.
The walker behavior again follows from the principle of
detailed balance. A walker at siieattempts a move in a
randomly chosen direction; that attenffu adjacent sit¢) is
successful with probabilityp;; . Equation (9) gives p;_,;
=pj_; Which impliesp;_,;>c;; and thus thap;;=o;; . Con-
sider now a walker diffusing over a regular conductor net-
work with all oj; = onax- Then every attempted move is suc-
cessful p;;=1) and the timer associated with a move is

7=\?/(2dDy) = (2doma) 1, (20)

where the bond length=1 for convenience.

More generally, a walker at siteattempts a move to a
randomly chosen adjacent siteduring the time interval
=(2doma) L that move is successful with probability;
= 0ij | Omax, Whereon,y is the network conductor with larg-
est conductivity value. The walker diffusion coefficidny, is
then calculated from the total displacement of the walker
over the time corresponding to the number of attempted
moves[Eqg. (4)].

This diffusion procedure is computationally inefficient,
since not all attempted moves by the walker are successful.
This is overcome by statistically weighing the behavior of
the walker such that every attempt is successful but the move
is accomplished over a variable time interval. Thus the actual
behavior of the walker is well approximated by a sequence of
moves in which the direction of each move from a siie
determined randomly by the set of probabilit{g%; }, where

Pi—j Oij

tential lines calculated for a potential difference applied across the P;:= = (21

composite.

J(r)=—=D(r)p(r)Ve(r),

whereD(r) andp(r) are the local walker diffusion coeffi-
cient and local walker density, respectively.

According to Ohm’s law, the electrical current density
Ji_; between adjacent network nodeandj due to the po-

tential differenceg; — ¢; is

‘]Iﬁj U|j(¢] ¢i)/rija

UUOSpiok Zkoik

and the time interval over which the move occurs is
T 1

T,= - 22
YUSpiok Zkoik 22

[the last equality in Eq(22) is specific to orthogonal net-
works, e.g., square and cubic netwdrKBhis variable resi-
dence time algorithm was verified analyticallpy use of
Markov chain theory9]) for one-dimensional conductor net-
works.

A further check is made by calculating the effective con-

where oy is the conductivity of the bond connecting the ductivity of square random networks where half the bonds

nodes and;;=1 is the bond lengtlithis derivation is spe-

have conductivityr, and half have conductivityg (so each

cialized toregular networks; that is, networks with regularly phase is at the bond percolation thresholthese results, for
spaced nodgsThen the local walker diffusion coefficient is ratiosog/o,=0.5, 0.1, 0.01, and 0.001, are presented in Fig.

identified with the conduct|V|ty such th&;; =

equilibrium walker density,°=1 at all nodes in the net-

3. Each data point is the average value obtained from 15
different networks of size 522512 (with periodic boundary
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0 - - T two-dimensional bond percolation igreater than 1.096
(since the slope of the curve in Fig. 4 is increasing as the
percolation threshold is approached from abhowehich is
consistent with exponent values obtained by, e.g., Stf@ky
(1.10+0.05), Stinchcombe and Wats¢hl] (1.13+0.09),
Fisch and Harrig12] (1.43+0.02), Ben-Mizrahi and Berg-
man [13] (1.00, Derrida and Vannimenug14] (1.28
+0.03), Sahimiet al.[15] (1.264+0.054), and Grassberger
30 . [16] (1.3100+0.0011). It is interesting to note that the
conductivity exponent obtained by the WDM for two-
dimensionalsite percolation is 1.253 0.005[4].

1k 4

In(c/o)

e . . , i The transport properties dfnite (nonperiodi¢ resistor
-8 -6 -4 2 0 networks can be found in a manner similar to that described
m(cg/c ) in the preceding section for finite scalar fields. A chemical
A

potential gradient is created by injecting walkers at selected
FIG. 3. Calculated values of the conductivity ratido, for ~ Nodes and removing them at other nodiesernal as well as
square random networks where half the bonds have conduatiyity boundary nodes can be walker sources and sifltgen the
and half have conductivitgg . The four data points are taken for Steady-statevalker density at nodeis the fraction of time
ogloa=0.5, 0.1, 0.01, and 0.001. spent by the walkers at nodge

conditiong; standard deviations about each average are pi=t/{ty) (24

much smaller than the size of the plotted point. The points all

fall on the straight line of slope 0.5, in agreement with the(in the absence of a chemical potentia)=p’=1). Other-

analytical relationo= (op0g) Y2 [8,10). wise the treatment for resistor networks follows that for sca-
The effective conductivity was also calculated for squardar fields; in particular, Eqs8)—(13) hold here as well. The

random networks where a fractidp of the bonds have con- counterpart to Eq(14) is

ductivity o5 and the rest are nonconducting. These results,

for f,=0.55, 0.6, 0.65, 0.7, and 0.8, are presented in Fig. 4. Jij=oij(exd wi /KT]—exd u; /kT]). (25

Each data point is the average value obtained from 15 differ-_ i , L

ent networks of size 10241024 (with periodic boundary NS suggests the particular identificatigp=exp wi /kT], so

conditions: standard deviations about each average ard1at the potential at nodeis

smaller than the size of the plotted point. The equation for

the curve fit through these pointgéand passing through the ¢i=pi=ti/{ty 26
origin) is and Eq.(25) for the walker flux becomes
Jinj=oij(di—¢)). (27)

olop=(2fp—1)r+v =D (23

This last equation is identical to E@18), which indicates
that the WDM forfinite resistor networks provides a random
walk solution to the set of FDM algebraic equations.

The WDM may be straightforwardly applied toegular

with  ©=1.027 71-0.00196 (standard error and v=
—0.02988-0.001 03. Thus the conductivity exponent for

" ' ' ' ' resistor networks as well, as those can be convertéfdds-

05l i sibly higher-dimensionalregular networks for which the
walker diffusion rule is given above. Actual conversion of an

10k ) irregular network is not necessary, however, when the vari-

able residence time algorithpiEgs. (21) and (22)], with the
conductivitiesa;; replaced by the conductances; /r;;, is
used. In this manner the transport properties of complex,
two-dimensional fracture networks can be calculated, for ex-
ample.

1 1 L i 4 IV. CONCLUDING REMARKS
-2.5 -2.0 -1.5 -1.0 -0.5 0.0

In(2f -1) The WDM can be used to calculate thffective(macro-
4 scopig andlocal (microscopig¢ transport properties of a het-
FIG. 4. Calculated values of the conductivity ratido, for erogeneous medium represented by a scalar field of local
square random networks where a fractibp of the bonds have transport coefficientge.g., conductivity or by a “resistor
conductivity o, and the rest are insulating. The five data pointsnetwork” derived from that scalar field. As a calculation can
(from the righ) are taken forf ,=0.8, 0.7, 0.65, 0.6, and 0.55. be accomplished by monitoring the position of a single
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walker, the method requires very little computer memory and ACKNOWLEDGMENTS
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